Submission to VIJ 2024-11-05
Keywords
- Artificial Intelligence,
- Bibliometric Analysis,
- ergonomic,
- Human-Robot Collaboration,
- Industry 5.0.
Copyright (c) 2024 Amanda Nur Cahyawati, Sylvie Indah Kartika Sari, Wisnu Wijayanto Putro, Lina Dianati Fathimahhayati
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Abstract:
Industry 5.0, the next stage of development after Industry 4.0, centers around the seamless integration of individuals and technology inside industrial processes to foster innovation that prioritizes human needs and experiences. Industry 5.0 diverges from Industry 4.0 by placing greater emphasis on the collaborative partnership between humans and machines rather than solely focusing on automation and advanced technologies like IoT and AI. The study employs bibliometric analysis to delineate the subjects and research areas in ergonomics within the context of Industry 5.0. The study analyzed literature from the Scopus database to identify trends and gaps in implementing ergonomic principles across different industrial sectors. The study addresses two distinct research inquiries: identifying overarching research subjects and emerging research themes. The results indicate the existence of four primary research clusters: the interaction between humans and advanced technology, the safety of work and collaboration between humans and robots, the optimization of multiple purposes and sustainable development, and the application of augmented reality in industrial design. The report emphasizes the growing importance of human-robot collaboration and artificial intelligence while acknowledging a decline in emphasis on user experience and virtual reality. The findings thoroughly analyze the present condition and development of ergonomics research in Industry 5.0 while providing significant recommendations for future investigations and real-world implementations.
References
- M. L. Pimenta, “Integração Interfuncional Em Processos De Desenvolvimento De Produtos Na Era Da Indústria 4.0,” Rev. Produção E Desenvolv., vol. 5, Jan. 2019, doi: 10.32358/rpd.2019.v5.350.
- C. M. Schlick and J. Bützler, Eds., “Ergonomic Design of Future Production Systems,” Occup. Ergon., vol. 12, no. 3, pp. 71–72, Sep. 2015, doi: 10.3233/OER-150224.
- O. Asan and A. Choudhury, “Research Trends in Artificial Intelligence Applications in Human Factors Health Care: Mapping Review,” JMIR Hum. Factors, vol. 8, no. 2, p. e28236, Jun. 2021, doi: 10.2196/28236.
- Y. Tao, H. Hu, J. Xue, Z. Zhang, and F. Xu, “Evaluation of Ergonomic Risks for Construction Workers Based on Multicriteria Decision Framework with the Integration of Spherical Fuzzy Set and Alternative Queuing Method,” Sustainability, vol. 16, no. 10, p. 3950, May 2024, doi: 10.3390/su16103950.
- B. A. Kadir, O. Broberg, and C. S. D. Conceição, “Current research and future perspectives on human factors and ergonomics in Industry 4.0,” Comput. Ind. Eng., vol. 137, p. 106004, Nov. 2019, doi: 10.1016/j.cie.2019.106004.
- D. Bogataj, D. Battini, M. Calzavara, and A. Persona, “Investments In Workplace Ergonomics From The Supply Chain Approach,” DEStech Trans. Eng. Technol. Res., no. icpr, Mar. 2018, doi: 10.12783/dtetr/icpr2017/17591.
- Ma. J. J. Gumasing, E. R. A. Rendon, and J. D. German, “Sustainable Ergonomic Workplace: Fostering Job Satisfaction and Productivity among Business Process Outsourcing (BPO) Workers,” Sustainability, vol. 15, no. 18, p. 13516, Sep. 2023, doi: 10.3390/su151813516.
- P. Beer and R. H. Mulder, “The Effects of Technological Developments on Work and Their Implications for Continuous Vocational Education and Training: A Systematic Review,” Front. Psychol., vol. 11, p. 918, May 2020, doi: 10.3389/fpsyg.2020.00918.
- M. J. Ávila-Gutiérrez, S. Suarez-Fernandez De Miranda, and F. Aguayo-González, “Occupational Safety and Health 5.0—A Model for Multilevel Strategic Deployment Aligned with the Sustainable Development Goals of Agenda 2030,” Sustainability, vol. 14, no. 11, p. 6741, May 2022, doi: 10.3390/su14116741.
- H. Kent Baker, N. Pandey, S. Kumar, and A. Haldar, “A bibliometric analysis of board diversity: Current status, development, and future research directions,” J. Bus. Res., vol. 108, pp. 232–246, Jan. 2020, doi: 10.1016/j.jbusres.2019.11.025.
- R. Zakaria, P. Vit, A. Wijaya, A. H. Ahmad, Z. Othman, and B. Mezzetti, “Evolution of blueberry (Vaccinium corymbosum L), raspberry (Rubus idaeus L) and strawberry (Fragaria x ananassa Duch.) research: 2012–2021,” J. Berry Res., vol. 12, no. 3, pp. 365–381, Sep. 2022, doi: 10.3233/JBR-220001.
- R. Pranckutė, “Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World,” Publications, vol. 9, no. 1, p. 12, Mar. 2021, doi: 10.3390/publications9010012.
- J. Zhu and W. Liu, “A tale of two databases: the use of Web of Science and Scopus in academic papers,” Scientometrics, vol. 123, no. 1, pp. 321–335, Apr. 2020, doi: 10.1007/s11192-020-03387-8.
- L. Basenach, B. Renneberg, H. Salbach, M. Dreier, and K. Wölfling, “Systematic reviews and meta-analyses of treatment interventions for Internet use disorders: Critical analysis of the methodical quality according to the PRISMA guidelines,” J. Behav. Addict., vol. 12, no. 1, pp. 9–25, Mar. 2023, doi: 10.1556/2006.2022.00087.
- M. Aria and C. Cuccurullo, “bibliometrix : An R-tool for comprehensive science mapping analysis,” J. Informetr., vol. 11, no. 4, pp. 959–975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.
- N. J. Van Eck and L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping,” Scientometrics, vol. 84, no. 2, pp. 523–538, Aug. 2010, doi: 10.1007/s11192-009-0146-3.
- J. A. Moral-Muñoz, E. Herrera-Viedma, A. Santisteban-Espejo, and M. J. Cobo, “Software tools for conducting bibliometric analysis in science: An up-to-date review,” El Prof. Inf., vol. 29, no. 1, Jan. 2020, doi: 10.3145/epi.2020.ene.03.
- O. Ellegaard and J. A. Wallin, “The bibliometric analysis of scholarly production: How great is the impact?,” Scientometrics, vol. 105, no. 3, pp. 1809–1831, Dec. 2015, doi: 10.1007/s11192-015-1645-z.
- [C. Li, K. Wu, and J. Wu, “A bibliometric analysis of research on haze during 2000–2016,” Environ. Sci. Pollut. Res., vol. 24, no. 32, pp. 24733–24742, Nov. 2017, doi: 10.1007/s11356-017-0440-1.
- N. Shafin et al., “Thematic analysis of multiple sclerosis research by enhanced strategic diagram,” Mult. Scler. J., vol. 28, no. 14, pp. 2160–2170, Dec. 2022, doi: 10.1177/13524585221075542.
- L. Gualtieri, I. Palomba, F. A. Merati, E. Rauch, and R. Vidoni, “Design of Human-Centered Collaborative Assembly Workstations for the Improvement of Operators’ Physical Ergonomics and Production Efficiency: A Case Study,” Sustainability, vol. 12, no. 9, p. 3606, Apr. 2020, doi: 10.3390/su12093606.
- I. El Makrini, G. Mathijssen, S. Verhaegen, T. Verstraten, and B. Vanderborght, “A Virtual Element-Based Postural Optimization Method for Improved Ergonomics During Human-Robot Collaboration,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 1772–1783, Jul. 2022, doi: 10.1109/TASE.2022.3147702.
- M. Omidi et al., “Improving Postural Ergonomics during Human–Robot Collaboration Using Particle Swarm Optimization: A Study in Virtual Environment,” Appl. Sci., vol. 13, no. 9, p. 5385, Apr. 2023, doi: 10.3390/app13095385.
- S. Proia, R. Carli, G. Cavone, and M. Dotoli, “Control Techniques for Safe, Ergonomic, and Efficient Human-Robot Collaboration in the Digital Industry: A Survey,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 1798–1819, Jul. 2022, doi: 10.1109/TASE.2021.3131011.
- A. Colim et al., “Lean Manufacturing and Ergonomics Integration: Defining Productivity and Wellbeing Indicators in a Human–Robot Workstation,” Sustainability, vol. 13, no. 4, p. 1931, Feb. 2021, doi: 10.3390/su13041931.
- N. Dimitropoulos, T. Togias, N. Zacharaki, G. Michalos, and S. Makris, “Seamless Human–Robot Collaborative Assembly Using Artificial Intelligence and Wearable Devices,” Appl. Sci., vol. 11, no. 12, p. 5699, Jun. 2021, doi: 10.3390/app11125699.
- S. Heydaryan, J. Suaza Bedolla, and G. Belingardi, “Safety Design and Development of a Human-Robot Collaboration Assembly Process in the Automotive Industry,” Appl. Sci., vol. 8, no. 3, p. 344, Feb. 2018, doi: 10.3390/app8030344.
- T. Maruyama et al., “Digital Twin-Driven Human Robot Collaboration Using a Digital Human,” Sensors, vol. 21, no. 24, p. 8266, Dec. 2021, doi: 10.3390/s21248266.
- B. Hasanain, “The Role of Ergonomic and Human Factors in Sustainable Manufacturing: A Review,” Machines, vol. 12, no. 3, p. 159, Feb. 2024, doi: 10.3390/machines12030159.
- M. Lagomarsino, M. Lorenzini, E. De Momi, and A. Ajoudani, “Robot Trajectory Adaptation to Optimise the Trade-off between Human Cognitive Ergonomics and Workplace Productivity in Collaborative Tasks,” 2022, doi: 10.48550/ARXIV.2207.03739.
- J. Hua, L. Zeng, G. Li, and Z. Ju, “Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning,” Sensors, vol. 21, no. 4, p. 1278, Feb. 2021, doi: 10.3390/s21041278.
- T. Davenport, A. Guha, D. Grewal, and T. Bressgott, “How artificial intelligence will change the future of marketing,” J. Acad. Mark. Sci., vol. 48, no. 1, pp. 24–42, Jan. 2020, doi: 10.1007/s11747-019-00696-0.
- A. O. Onososen and I. Musonda, “Ergonomics in construction robotics and human-robot teams in the AEC domain: a review,” IOP Conf. Ser. Earth Environ. Sci., vol. 1101, no. 5, p. 052003, Nov. 2022, doi: 10.1088/1755-1315/1101/5/052003.
- A. Hentout, M. Aouache, A. Maoudj, and I. Akli, “Human–robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017,” Adv. Robot., vol. 33, no. 15–16, pp. 764–799, Aug. 2019, doi: 10.1080/01691864.2019.1636714.
- G. D. M. Costa, M. R. Petry, and A. P. Moreira, “Augmented Reality for Human–Robot Collaboration and Cooperation in Industrial Applications: A Systematic Literature Review,” Sensors, vol. 22, no. 7, p. 2725, Apr. 2022, doi: 10.3390/s22072725.
- M. J. Cobo, A. G. López-Herrera, E. Herrera-Viedma, and F. Herrera, “An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field,” J. Informetr., vol. 5, no. 1, pp. 146–166, Jan. 2011, doi: 10.1016/j.joi.2010.10.002.