VIJ Digital library
Articles

IoT and Edge Computing for Smart Manufacturing: Architecture and Future Trends

Sunthar Subramanian
Director -IoT & Sustainability -Smart Manufacturing

Submission to VIJ 2024-10-15

Abstract

The  integration  of  the  Internet  of  Things  (IoT)  and  Edge Computing  is  revolutionizing  the  manufacturing industry, ushering in the era of smart manufacturing as part of Industry 4.0. This paper explores the synergy between  IoT  and  Edge  Computing,  focusing  on  their  combined  architecture  and  the  future  trends  driving innovation  in  smart  factories.  IoT  enables  the  connection  and  communication  of  machines,  sensors,  and systems, allowing for real-time data collection and monitoring. However, traditional cloud-based approaches face challenges such as latency, bandwidth limitations, and security risks, which can hinder real-time decision-making in fast-paced manufacturing environments.Edge Computing addresses these issues by processing data closer  to  the  source,  minimizing  latency,  and  reducing  dependence  on  cloud  infrastructures.  By combining IoT  and  edge  solutions,  smart  manufacturing  systems  can  make  faster,  data-driven  decisions,  improving efficiency, reliability, and operational flexibility. This paper delves into the architectural design of IoT and edge computing inmanufacturing, outlining how data flows from IoT devices to edge nodes and cloud services. Several real-world use cases and industry examples are analyzed to highlight the practical benefits of these technologies.Additionally, this research identifies key challenges such as security vulnerabilities, the need for robust  network  infrastructures  (e.g.,  5G),  and  issues  related  to  data  standardization.  The  future  of  smart manufacturing  is  also  explored,  emphasizing  trends  like  the  adoption  of  artificial  intelligence  (AI)  and machine  learning  (ML)  at  the  edge,  digital  twins  for  real-time  monitoring,  and  the  role  of  IoT  and  edge computing  in  fostering  sustainability  through  energy-efficient  production  processes.This  study  provides  a comprehensive overview of IoTand edge computing architectures in smart manufacturing and offers insights into future technological trends that will shape the industry

References

  1. Nain, G., Pattanaik, K. K., & Sharma, G. K. (2022). Towards edge computing in intelligent manufacturing: Past, present and future. Journal of Manufacturing Systems, 62, 588-611.
  2. Qi, Q., & Tao, F. (2019). A smart manufacturing service system based on edge computing, fog computing, and cloud computing. IEEE Access, 7, 86769-86777.
  3. Carvalho, G., Cabral, B., Pereira, V., & Bernardino, J. (2021). Edge computing: current trends, research challenges, and future directions. Computing, 103(5), 993-1023.
  4. Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., & Wu, D. O. (2020). Edge computing in industrial internet of things: Architecture, advances and challenges. IEEE Communications Surveys & Tutorials, 22(4), 2462-2488.
  5. Qu, Y. J., Ming, X. G., Liu, Z. W., Zhang, X. Y., & Hou, Z. T. (2019). Smart manufacturing systems: state of the art and future trends. The International Journal of Advanced Manufacturing Technology, 103, 3751-3768.
  6. Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2021). Smart manufacturing and tactile internet based on 5G in industry 4.0: Challenges, applications and new trends. Electronics, 10(24), 3175.
  7. Pan, J., & McElhannon, J. (2017). Future edge cloud and edge computing for internet of things applications. IEEE Internet of Things Journal, 5(1), 439-449.
  8. Kubiak, K., Dec, G., & Stadnicka, D. (2022). Possible applications of edge computing in the manufacturing industry—systematic literature review. Sensors, 22(7), 2445.
  9. Cheng, J., Chen, W., Tao, F., & Lin, C. L. (2018). Industrial IoT in 5G environment towards smart manufacturing. Journal of Industrial Information Integration, 10, 10-19.
  10. Hamdan, S., Ayyash, M., & Almajali, S. (2020). Edge-computing architectures for internet of things applications: A survey. Sensors, 20(22), 6441.
  11. Yang, H., Kumara, S., Bukkapatnam, S. T., & Tsung, F. (2019). The internet of things for smart manufacturing: A review. IISE transactions, 51(11), 1190-1216.
  12. Kausar, M., Ishtiaq, M., & Hussain, S. (2021). Distributed agile patterns-using agile practices to solve offshore development issues. IEEE Access, 10, 8840-8854.
  13. Kausar, M., & Al-Yasiri, A. (2015, July). Distributed agile patterns for offshore software development. In 12th International Joint Conference on Computer Science and Software Engineering (JCSSE), IEEE (p. 17).
  14. Kausar, M., Muhammad, A. W., Jabbar, R., & Ishtiaq, M. (2022). Key challenges of requirement change management in the context of global software development: systematic literature review. Pakistan Journal of Engineering and Applied Sciences.
  15. Vaithianathan, M. (2024). Real-Time Object Detection and Recognition in FPGA-Based Autonomous Driving Systems. International Journal of Computer Trends and Technology, 72(4), 145-152.
  16. Kausar, M., & Al-Yasiri, A. (2017). Using distributed agile patterns for supporting the requirements engineering process. Requirements Engineering for Service and Cloud Computing, 291-316. Cena, J., & Harry, A. (2024). Blockchain-Based Solutions for Privacy-Preserving Authentication and Authorization in Networks.
  17. Vaithianathan, M., Patil, M., Ng, S. F., & Udkar, S. (2023). Comparative Study of FPGA and GPU for High-Performance Computing and AI. ESP International Journal of Advancements in Computational Technology (ESP-IJACT), 1(1), 37-46.
  18. Kausar, M., Mazhar, N., Ishtiaq, M., & Alabrah, A. (2023). Decision Making of Agile Patterns in Offshore Software Development Outsourcing: A Fuzzy Logic-Based Analysis. Axioms, 12(3), 307.
  19. Vaithianathan, M., Patil, M., Ng, S. F., & Udkar, S. (2024). Integrating AI and Machine Learning with UVM in Semiconductor Design. ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume, 2, 37-51.
  20. Kausar, M. (2018). Distributed agile patterns: an approach to facilitate agile adoption in offshore software development. University of Salford (United Kingdom).
  21. Seenivasan, D., & Vaithianathan, M. Real-Time Adaptation: Change Data Capture in Modern Computer Architecture.
  22. Mazhar, N., & Kausar, M. (2023). Rational Coordination in Cognitive Agents: A Decision-Theoretic Approach Using ERMM. IEEE Access.
  23. Wang, J. (2021). Impact of mobile payment on e-commerce operations in different business scenarios under cloud computing environment. International Journal of System Assurance Engineering and Management, 12(4), 776-789.
  24. Wang, J., & Zheng, G. (2020). Research on E-commerce Talents Training in Higher Vocational Education under New Business Background. INTI JOURNAL, 2020(5).
  25. Xiao, G., Lin, Y., Lin, H., Dai, M., Chen, L., Jiang, X., ... & Zhang, W. (2022). Bioinspired self-assembled Fe/Cu-phenolic building blocks of hierarchical porous biomass-derived carbon aerogels for enhanced electrocatalytic oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 128932.
  26. Xiao, G., Lin, H., Lin, Y., Chen, L., Jiang, X., Cao, X., ... & Zhang, W. (2022). Self-assembled hierarchical metal–polyphenol-coordinated hybrid 2D Co–C TA@ gC 3 N 4 heterostructured nanosheets for efficient electrocatalytic oxygen reduction. Catalysis Science & Technology, 12(14), 4653-4661.