VIJ Digital library
Articles

Customer Churn Analysis Using Machine Learning to Improve Customer Retention on Vissie Net

Ronnald Christanto Admanegara
Universitas Pembangunan Nasional "Veteran" Jawa Timur
Bio
Wiwik Handayani
Universitas Pembangunan Nasional "Veteran" Jawa Timur
Bio

Submission to VIJ 2024-09-10

Keywords

  • Customer Retention,
  • Service Science,
  • Fishbone Diagram,
  • Service Improvement

Abstract

The industrial transformation that positions the internet as essential for all social aspects has intensified competition among internet service providers in Indonesia, including efforts to retain customers. This study focuses on predicting customer churn at Vissie Net using the CRISP-DM method combined with supervised learning algorithms, particularly Random Forest, and utilizing a fishbone diagram to identify areas for improvement. The research analyzes a dataset of 1,119 customers, considering variables like subscription length, contract terms, bills, packages, demographics, and churn data. Results indicate that the Random Forest algorithm excels in predicting churn, with 21.8% of customers unsubscribing. The fishbone diagram highlights factors influencing churn and offers suggestions for service variety, AI integration, customer satisfaction, and staff training.

References

  1. Annur, C. M. (2023, September 8). Jumlah Perusahaan Penyedia Internet di Indonesia Terus Bertambah sampai 2022. Databoks. https://databoks.katadata.co.id/datapublish/2023/09/08/jumlah-perusahaan-penyedia-internet-di-indonesia-terus-bertambah-sampai-2022
  2. APJII. (2024, February 7). APJII Jumlah Pengguna Internet Indonesia Tembus 221 Juta Orang. APJII. https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang
  3. Arifiyanti, A. A., & Wahyuni, E. D. (2020). Smote: Metode Penyeimbang Kelas Pada Klasifikasi Data Mining. SCAN, 15(1), 34–39. https://www.cs.
  4. Aziz, A. M. N., Mauliddin, A., Armanda Sintalana, V., Daryl Hafiz, R., Akbar Rismayadi, A., Studi Sistem Informasi, P., & Adhirajasa Reswara Sanjaya, U. (2023). Prediksi Customer Churn Menggunakan Logistic Regression dan Decission Tree. E-Prosiding Teknik Informatika, 4(1).
  5. Boruhan, G. (2022). Churn Customer Management in Retail Industry: A Case Study. İzmir İktisat Dergisi, 37(4), 1094–1118. https://doi.org/10.24988/ije.1070830
  6. Darmawan, T. (2020). Credit Classification Using CRISP-DM Method On Bank ABC Customers. International Journal of Emerging Trends in Engineering Research, 8(6), 2375–2380. https://doi.org/10.30534/ijeter/2020/28862020
  7. De Fretes, R. A. (2022). Analisis Penyebab Kerusakan Transformator menggunakan metode RCA (Fishbone Diagram and 5-whys analysis) di PT. PLN (Persero) Kantor Pelayanan Kiandarat. 16(2), 117–124.
  8. Fathurrahman, A. W., Thoriqulhaq, M., Dequika, F., Putra Arianto, P., Studi, P., Data, S., & Timur, J. (2022). Penerapan Machine Learning untuk Pengklasifikasian Hoaks pada Platform Media Sosial:Studi Literatur. Seminar Nasional Sains Data 2022 (SENADA 2022) UPN “Veteran” Jawa Timur, 66–68.
  9. Fauziningrum, E., & Suryaningsih, E. I. (2021). Evaluasi dan Prediksi Penguasaan Bahasa Inggris Maritim Menggunakan Metode Decision Tree dan Confusion Matrix (Studi Kasus Di Universitas Maritim Amni). http://repository.unimar-amni.ac.id/id/eprint/3837
  10. Hindrayani, K. M., Anjani, A., & Nurlaili, A. L. (2021). Penerapan Machine Learning pada Penjualan Produk UMKM : Studi Literatur. Seminar Nasional Sains Data, 19–23.
  11. Husein, A. M., & Harahap, M. (2021). Pendekatan Data Science untuk Menemukan Churn Pelanggan pada Sector Perbankan dengan Machine Learning. Data Sciences Indonesia (DSI), 1(1), 8–13. https://doi.org/10.47709/dsi.v1i1.1169
  12. Kamil, F., Salkiawati, R., & Alexander, A. * D. (2023). Analisis Churn Pelanggan Produk Fashion Campus Menggunakan Metode RFM Analysis dan Algoritma Naïve Bayes (Studi Kasus Yayasan Bakti Achmad Zaky). In Jurnal Esensi Infokom (Vol. 7, Issue 2).
  13. Kumalasari, A. T., & Handayani, W. (2024). Sentiment Analysis To Improve The Quality Of Public Transportation Services “Suroboyo Bus.” Indonesian Interdisciplinary Journal of Sharia Economics (IIJSE), 7(3).
  14. Mobarhantalab, S. S. (2022). Clarifying the concept of service in service science. 11th International Conference on Management, World Trade, Economics, Finance & Social Science. https://www.researchgate.net/publication/369529140
  15. Nilwanda, L. E., Arifiyanti, A. A., & Hadiwiyanti, R. (2024). Penerapan Algoritma (Nilwanda, dkk) Madani. Jurnal Ilmiah Multidisiplin, 2(1), 221–230. https://doi.org/10.5281/zenodo.10523523
  16. Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 5, Issue 2).
  17. Nurhidayat, M. M. S., & Anggraini, D. (2023). Analysis and Classification of Customer Churn Using Machine Learning Models. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(6), 1253–1259. https://doi.org/10.29207/resti.v7i6.4933
  18. Ouali, Y., Hudelot, C., & Tami, M. (2020). An Overview of Deep Semi-Supervised Learning. Cornel University. http://arxiv.org/abs/2006.05278
  19. Pambudi, A., & Abidin, Z. (2023). Penerapan Crisp-Dm Menggunakan Mlr K-Fold Pada Data Saham Pt. Telkom Indonesia (Persero) Tbk (Tlkm) (Studi Kasus: Bursa Efek Indonesia Tahun 2015-2022). JDMSI, 4(1), 1–14.
  20. Priyambudi, N. A., & Handayani, W. (2024). T Analysis Of Service Science-Based Academic Service Development In The Management Study Program Of UPN “Veteran” East Java. Indonesian Interdisciplinary Journal of Sharia Economics (IIJSE), 7(3).
  21. Puspitasari, A., & Masruroh, N. A. (2024). Reducing Customer Churn for XL Axiata Prepaid: Factors and Strategies *Correspondence. In Journal of Industrial Engineering and Education (Vol. 2, Issue 1).
  22. Revika, N. R., Handayani, W., Pembangunan, U., Veteran, N. ", Timur, J., Raya, J., Madya, R., & Anyar, G. (2022). Desain Service Science untuk Meningkatkan Kepuasan Mahasiswa Terhadap E-Learning Universitas Pembangunan Nasional “Veteran” Jawa Timur. BRILIANT: Jurnal Riset Dan Konseptual, 7(4). https://doi.org/10.28926/briliant.v7i4
  23. Romadloni, P. L., Kusuma, B. A., & Baihaqi, W. M. (2022). Komparasi Metode Pembelajaran Mesin untuk Implementasi Pengambilan Keputusan dalam Menentukan Promosi Jabatan Karyawan. Jurnal Mahasiswa Teknik Informatika (JATI), 6(2), 622–628.
  24. Rukmana, S., & Handayani, W. (2023). Analysis of Service Science Design through Customer Experience to Increase PosAja Application User Satisfaction. Kontigensi : Jurnal Ilmiah Manajemen, 11(2). https://doi.org/10.56457/jimk.v11i2.402
  25. Sakdiyah, S. H., Eltivia, N., & Afandi, A. (2022). Root Cause Analysis Using Fishbone Diagram: Company Management Decision Making. Journal of Applied Business, Taxation and Economics Research, 1(6), 566–576. https://doi.org/10.54408/jabter.v1i6.103
  26. Santoso, H., Putri, R. A., & Sahbandi, S. (2023). Deteksi Komentar Cyberbullying pada Media Sosial Instagram Menggunakan Algoritma Random Forest. Jurnal Manajemen Informatika (JAMIKA), 13(1), 62–72. https://doi.org/10.34010/jamika.v13i1.9303
  27. Sugiyono. (2021). Metode Penelitian Kuantitatif, Kualitatif, dan R&D (3rd ed., Vol. 1). Alfabeta.
  28. Suhanda, Y., Nurlaela, L., Kurniati, I., Dharmalau, A., & Rosita, I. (2022). Predictive Analysis of Customer Retention Using the Random Forest Algorithm. TIERS Information Technology Journal, 3(1), 35–47. https://doi.org/10.38043/tiers.v3i1.3616
  29. Sulistyawati, W., Trinuryono, S., & Wahyudi. (2022). Analisis (Deskriptif Kuantitatif) Motivasi Belajar Siswa dengan Model Blended Learning di Masa Pandemi COVID19. Jurnal Universitas Jember, 13(1), 68–73.
  30. Wibowo, A. S. (2024). Analisis Churn Nasabah Bank Dengan Pendekatan Machine Learning dan Pengelompokan Profil Nasabah dengan Pendekatan Clustering. Konstruksi: Publikasi Ilmu Teknik, Perencanaan Tata Ruang Dan Teknik Sipil, 2(1), 30–41. https://doi.org/10.61132/konstruksi.v2i1.43
  31. Yudiana, Y., Yulia Agustina, A., & Nur Khofifah, dan. (2023). Prediksi Customer Churn Menggunakan Metode CRISP-DM Pada Industri Telekomunikasi Sebagai Implementasi Mempertahankan Pelanggan. IJIEB : Indonesian Journal of Islamic Economics and Business, 8(1). http://e-journal.lp2m.uinjambi.ac.id/ojp/index.php/ijoieb