VIJ Digital library
Articles

Metropolitan Flood Risk Characterization Using Remote Sensing, GIS, and Fuzzy Logic (RS-GIS-Fl) Approach: Suleja, Nigeria

Atemoagbo, Oyarekhua Precious
Department of Agricultural and Bioresources Engineering, Federal University of Technology, Minna, Nigeria
Martins, Yusuf Otache
Department of Agricultural and Bioresources Engineering, Federal University of Technology, Minna, Nigeria
Animashaun, Iyanda Murtala
Department of Agricultural and Bioresources Engineering, Federal University of Technology, Minna, Nigeria
Samuel Emeke Chukwu
Department of Agricultural and Bioresources Engineering, Federal University of Technology, Minna, Nigeria

Submission to VIJ 2024-07-28

Abstract

Climate change exacerbates extreme events like floods, droughts, heatwaves, cyclones, hurricanes, tornadoes, and wildfires, affecting human populations and environments worldwide. Despite varying impacts across regions, no area is immune to climate change consequences. To mitigate these effects, this study employs Geographic Information System (GIS), Remote Sensing, and Fuzzy Logic System to map flood vulnerability zones in Suleja Local Government, Niger State, North Central Nigeria. The research integrates satellite and GIS datasets to prepare Suleja's Flood Zonation Mapping. Rainfall data from Nigeria Meteorological Agency (NiMET), Climate Hazards Group InfraRed Precipitation with Station Data (CHRPS), Global Satellite Mapping of Precipitation (GSMaP), and parameters like Slope, Elevation, Nearness to Water Bodies, Land Use Land Cover, and Drainage Density are utilized to identify flood vulnerability. The flood vulnerability map categorizes the area into five zones: Very Low Risk (40.9%), Low Risk (18.9%), Medium Risk (27.6%), High Risk (7.1%), and Very High Risk (5.5%). Considering the stochastic nature of flood characteristics, this study emphasizes the importance of integrating hydro-climatic and physical catchment parameters, leveraging bias-adjusted satellite data to minimize uncertainty. Effective flood management requires quantifying risk, susceptibility, and hazard components to establish a robust control framework. This research contributes to the development of data-driven flood mitigation strategies in vulnerable regions like Suleja. By harnessing GIS, Remote Sensing, and Fuzzy Logic System, policymakers and stakeholders can make informed decisions to protect communities and infrastructure from flood risks.

 

References

  1. Adger, W. N., Arnell, N. W., & Tompkins, E. L. (2005). Successful adaptation to climate change across scales. Global Environmental Change, 15(2), 77-86.
  2. Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., & Rockström, J. (2005). Social-ecological resilience to coastal disasters. Science, 309(5737), 1036-1039.
  3. Antzoulatos, G., Kouloglou, I., Bakratsas, M., Moumtzidou, A., Gialampoukidis, I., Karakostas, A., Lombardo, F., Fiorin, R., Norbiato, D., Ferri, M., Symeonidis, A., Vrochidis, S., & Kompatsiaris, I. (2022). Flood Hazard and Risk Mapping by Applying an Explainable Machine Learning Framework Using Satellite Imagery and GIS Data. Sustainability, 14(6), 3251. https://doi.org/10.3390/su14063251
  4. Atemoagbo, O. P. (2024). Confirmatory Factor Analysis on Climate Change Impact on Human Migration Patterns and Social Vulnerability. International Journal of Engineering and Computer Science, 13(02), 26057–26068. Retrieved from https://ijecs.in/index.php/ijecs/article/view/4782
  5. Atemoagbo, O. P. (2024). Investigating The Impact of Sanitation Infrastructure on Groundwater Quality and Human Health in Peri-Urban Areas. International Journal of Medical Science and Clinical Invention, 11(01), 7260–7273. Retrieved from https://valleyinternational.net/index.php/ijmsci/article/view/4695
  6. Atemoagbo, O. P. (2024). Risk Assessment and Remediation Options for Oil-Contaminated Soil and Groundwater: A Comparative Analysis of Chemical, Physical, And Biological Treatment Methods. Research and Analysis Journal, 7(01), 01–11. Retrieved from https://rajournals.com/index.php/raj/article/view/383
  7. Atemoagbo, O. P. (2024); Martins, Y. O.; Animashaun, I. M.; Chukwu, S. E. (2024). Metropolitan Flood Risk Characterization Using Remote Sensing, GIS, and Fuzzy Logic (RS-GIS-Fl) Approach: Suleja, Nigeria. International Journal of Engineering and Computer Science, 13(03), 26101–26111. Retrieved from https://ijecs.in/index.php/ijecs/article/view/4798
  8. Atemoagbo, O. P.; Abdullahi, A.; Siyan P. (2024). Cluster Analysis of MSMES In Suleja, Nigeria: Insights From Fuzzy C-Means Clustering And T-SNE Visualizations. Management and Economic Journal, 1–9. Retrieved from https://everant.in/index.php/mej/article/view/577
  9. Atemoagbo, O. P.; Abdullahi, A.; Siyan, P. (2024). Modeling Economic Relationships: A Statistical Investigation of Trends and Relationships”, Soc. sci. humanities j., vol. 8, no. 05, pp. 3778–3796, Oct. 2024, doi: 10.18535/sshj.v8i05.1039.
  10. Birkmann, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S., ... & Welle, T. (2013). Framing vulnerability, risk and societal responses: The MOVE framework. Natural Hazards, 67(2), 193-211.
  11. Boardman, J., Poesen, J., & Evans, R. (2003). Socio-economic factors in soil erosion and conservation. Environmental Science & Policy, 6(1), 1–6. https://doi.org/10.1016/s1462-9011(02)00120-x
  12. Böhm, O., Jacobeit, J., Glaser, R., & Wetzel, K. (2015). Flood sensitivity of the Bavarian Alpine Foreland since the late Middle Ages in the context of internal and external climate forcing factors. Hydrology and Earth System Sciences, 19(12), 4721–4734. https://doi.org/10.5194/hess-19-4721-2015
  13. Burroughs, S. M. (1986). Geomorphologic hazards and risk assessment. Journal of Geology, 94(4), 439-453.
  14. Change, N. I. P. O. C. (2023). Climate Change 2022 – Impacts, Adaptation and Vulnerability. https://doi.org/10.1017/9781009325844
  15. Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(1), 242-261.
  16. Deepak, S., Rajan, G., & Jairaj, P. G. (2020). Geospatial approach for assessment of vulnerability to flood in local self governments. Geoenvironmental Disasters, 7(1). https://doi.org/10.1186/s40677-020-00172-w
  17. Di Baldassarre, G., Kemerink, J. S., Kooy, M., & Brandimarte, L. (2014). Floods and societies: the spatial distribution of water‐related disaster risk and its dynamics. Wiley Interdisciplinary Reviews Water, 1(2), 133–139. https://doi.org/10.1002/wat2.1015
  18. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
  19. Foy, K. C. (2013). Home is Where the Health Is: The Convergence of Environmental Justice, Affordable Housing, and Green Building. Pace Environmental Law Review, 30(1), 1. https://doi.org/10.58948/0738-6206.1707
  20. Giordan, D., Adams, M. S., Aicardi, I., Alicandro, M., Allasia, P., Baldo, M., De Berardinis, P., Dominici, D., Godone, D., Hobbs, P., Lechner, V., Niedzielski, T., Piras, M., Rotilio, M., Salvini, R., Segor, V., Sotier, B., & Troilo, F. (2020). The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bulletin of Engineering Geology and the Environment, 79(7), 3437–3481. https://doi.org/10.1007/s10064-020-01766-2
  21. Gorsevski, P. V., Onyango, T. A., & Ramadan, M. M. (2012). Mapping natural hazards and vulnerabilities in the USA: A GIS-based approach. Journal of Hazardous Materials, 197, 20-33.
  22. Hagos, Y. G., Andualem, T. G., Yibeltal, M., & Mengie, M. A. (2022). Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Applied Water Science, 12(7). https://doi.org/10.1007/s13201-022-01674-8
  23. Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A., Chen, W., Kougias, I., & Kazakis, N. (2018). Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. The Science of the Total Environment, 621, 1124–1141. https://doi.org/10.1016/j.scitotenv.2017.10.114
  24. Karagiorgos, K., Thaler, T., Heiser, M., Hübl, J., & Fuchs, S. (2016). Integrated flash flood vulnerability assessment: Insights from East Attica, Greece. Journal of Hydrology, 541, 553–562. https://doi.org/10.1016/j.jhydrol.2016.02.052
  25. Khailani, D. K., & Perera, R. (2013). Mainstreaming disaster resilience attributes in local development plans for the adaptation to climate change induced flooding: A study based on the local plan of Shah Alam City, Malaysia. Land Use Policy, 30(1), 615–627. https://doi.org/10.1016/j.landusepol.2012.05.003
  26. Melody, S., & Johnston, F. (2015). Coal mine fires and human health: What do we know? International Journal of Coal Geology, 152, 1–14. https://doi.org/10.1016/j.coal.2015.11.001
  27. NPC. (2006). Population and housing census of the federal republic of Nigeria: National and state population and housing priority tables. Population Commission Office, Niger state.
  28. Nwoke, L. I. (2016). The Psychological Impact of Live Broadcasting On Mental Health: A Comparative Study of Radio And Television Presenters. (2016). International Journal of Scientific Research and Management (IJSRM), 4(9), 4636-4646. https://doi.org/10.18535/ijsrm/v4i9.21
  29. Nwoke, L. I. (2017). Social Media Use and Emotional Regulation in Adolescents with Autism Spectrum Disorder: A Longitudinal Examination of Moderating Factors. International Journal of Medical Science and Clinical Invention, 4(3), 2816–2827. Retrieved from https://valleyinternational.net/index.php/ijmsci/article/view/2555
  30. Nwoke, L. I., Precious, A. O., Aisha, A., & Peter, S. (2022). The Impact of Cashless Policy on the Performance of Msmes in Nigeria Using Artificial Neural Network. International Journal of Social Sciences and Humanities Invention, 9(08), 7182–7193. https://doi.org/10.18535/ijsshi/v9i08.09
  31. Ouma, Y. O., & Tateishi, R. (2014). Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water, 6(6), 1515–1545. https://doi.org/10.3390/w6061515
  32. Pham, B. T., Nguyen-Thoi, T., Qi, C., Van Phong, T., Dou, J., Ho, L. S., Van Le, H., & Prakash, I. (2020). Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. CATENA, 195, 104805. https://doi.org/10.1016/j.catena.2020.104805
  33. Swain, K. C., Singha, C., & Nayak, L. (2020). Flood Susceptibility Mapping through the GIS-AHP Technique Using the Cloud. ISPRS International Journal of Geo-Information, 9(12), 720. https://doi.org/10.3390/ijgi9120720
  34. Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2019). Flood susceptibility mapping using GIS-based multi-criteria decision analysis. Journal of Hydrology, 570, 332-344.
  35. Termeh, S. V. R., Kornejady, A., Pourghasemi, H. R., & Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. The Science of the Total Environment, 615, 438–451. https://doi.org/10.1016/j.scitotenv.2017.09.262
  36. Umar, N., & Alison, G. (2022). Flooding in Nigeria: a review of its occurrence and impacts and approaches to modelling flood data. International Journal of Environmental Studies, 3-7.
  37. Wang, Y., Li, Z., & Wang, X. (2018). Flood risk management in a changing climate: A review. Journal of Hydrology, 563, 462-476.
  38. Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
  39. Xiong, L., Tang, G., Yang, X., & Li, F. (2021). Geomorphology-oriented digital terrain analysis: Progress and perspectives. Journal of Geographical Sciences, 31(3), 456–476. https://doi.org/10.1007/s11442-021-1853-9
  40. Yalcin, A., Reis, S., Aydinoglu, A., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA, 85(3), 274–287. https://doi.org/10.1016/j.catena.2011.01.014