
www.ijecs.in
International Journal Of Engineering And Computer Science

Volume 13 Issue 05 May 2024, Page No. 26178-26184

ISSN: 2319-7242 DOI: 10.18535/ijecs/v13i05.4821

Kine Apobari Benson, IJECS Volume 13 Issue 05 May, 2024 Page 26178

A Model for Detection and Prevention of AndroRat in Mobile

Devices

Kine Apobari Benson
1
, Dr V. T. Emmah

2
, Dr. N. D. Nwiabu

3

1,2,3 Department of Computer Science Rivers State University

Abstract –

Android operating systems has gained increasing popularity in smart phones and other mobile intelligent

terminals in recent years. Unpleasantly, the accumulation development and open nature of the platform has

also attracted a vast number of malware developers. This paper presents a model for detecting and

preventing AndroRat, a notorious Remote Administration Tool (RAT), on android devices. The research

systematically pursued predefined objectives, leading to the development of a robust detection framework

that utilizes the Outlier Technique. This framework significantly enhances the accuracy of AndroRat

identification. Moreover, the dissertation introduces a preventive mechanism based on Recurrent Neural

Network (RNN), fortifying Android phones against potential threats posed by RATs. By achieving the

outlined objectives, this research makes a noteworthy contribution to the field of mobile device security. It

demonstrates a practical application of machine learning techniques in mitigating evolving cybersecurity

threats. A dataset was gathered for constructing the model. Object Oriented Analysis and Design (OOAD)

was used as the research methodology and python was used as the programming language. The

implementation of the Python Programming Language in this system not only ensured efficient execution

but also established a versatile and accessible platform, laying the groundwork for future enhancements and

adaptations. The comparative analysis conducted against existing systems highlights the effectiveness and

innovation embedded in the proposed model, affirming its potential as a valuable addition to the realm of

AndroRat detection and prevention with an accuracy of 99.99%. This dissertation not only addresses current

security challenges but also establishes a foundation for continued advancements in mobile device security

through the integration of cutting-edge technologies.

Keywords – AndroRat, Android devices, Recurrent neural network, malware attack

1. Introduction

AndroRat, an Android Remote Administration Tool,

raises privacy and security concerns due to its

ability to run stealthily in the background, allowing

remote monitoring and control of devices. Research

on AndroRat has explored various aspects,

including its functionalities, detection techniques,

and mitigation strategies, aiming to develop

effective countermeasures against its malicious

activities. Studies have investigated the evolution of

AndroRat variants and their adaptation to evade

detection mechanisms, while also focusing on

enhancing the resilience of mobile devices against

AndroRat attacks through the development of

robust security protocols. Security challenges

associated with AndroRat detection involve its

rapid evolution and the proliferation of variants,

making it difficult for traditional antivirus software

to effectively identify and mitigate threats. To

address these challenges, researchers have proposed

automatic detection solutions and emphasized the

importance of proactive and adaptive approaches to

malware detection. Motivations for researching

AndroRat stem from its significant impact on

mobile security, highlighting the need to understand

its behavior and develop proactive measures to

protect against its threats. Successful research on

AndroRat contributes to advancing mobile security

knowledge, developing innovative techniques and

tools, and fostering a safer mobile ecosystem for

users worldwide.

Kine Apobari Benson, IJECS Volume 13 Issue 05 May, 2024 Page 26179

2. Review of Related Literatures

This section delves into an in-depth review of

relevant literature pertaining to the detection of

AndroRat, an Android Remote Administration Tool.

With the proliferation of mobile devices,

particularly those running the Android operating

system, AndroRat has emerged as a significant

security concern due to its potential for

unauthorized remote access and control.

Researchers and security analysts have recognized

the need for effective detection mechanisms to

mitigate the risks posed by AndroRat and similar

remote administration tools.

Chen and Chen (2019) proposed a Convolutional

Neural Network (CNN) for Android malware

detection. They used the CNN to extract features

from the Android APK files and achieved a

detection rate of 97.5%. However, the limitations of

their approach include the requirement for large

amounts of labeled data, the need for significant

computational resources, and the possibility of

overfitting.

Zhang, Wang, and Zhang (2018) developed an

Android malware detection system based on

gradient boosting decision tree. Their gradient

boosting technique achieved an accuracy of 98.45%

with a false positive rate of 0.55%. However, their

system is limited by the time required for feature

extraction and the possibility of false negatives.

Shi, Xu, and Yang (2019) used random forest

classifier for Android malware detection. Their

approach used a combination of feature selection

and classification techniques and achieved an

accuracy of 99.3%. However, their approach

requires a large amount of computational resources,

which may not be practical for real-time detection.

Wang et al. (2020) presented an Android malware

detection method based on gradient boosting

decision tree. Their approach achieved an accuracy

of 98.97% with a false positive rate of 0.1%.

However, their approach requires significant time

for feature extraction, which may not be practical

for real-time detection.

Nabi et al. (2019) proposed a machine learning-

based approach for Android malware detection that

used a combination of static and dynamic analysis.

Their support vector classifier achieved an accuracy

of 96.8%. However, their approach requires

significant computational resources and may be

vulnerable to evasion attacks.

Ali et al. (2021) presented a hybrid approach for

Android malware detection that combines static and

dynamic analysis with machine learning. The

proposed PCA-SVM classifier achieved an

accuracy of 99.4% with a false positive rate of 0.2%.

However, their approach requires significant

computational resources and may not be practical

for real-time detection.

Al-Fuqaha et al. (2019) developed an Android

malware detection system based on ensemble

learning. Their approach achieved an accuracy of

98.5% with a false positive rate of 0.2%. However,

their approach requires significant computational

resources and may not be practical for real-time

detection.

Ahmad et al. (2020) proposed a machine learning-

based approach for Android malware detection that

uses a combination of static and dynamic analysis.

The Decision Tree Classifier achieved an accuracy

of 98.9% with a false positive rate of 0.3%.

However, their approach requires significant

computational resources and may not be practical

for real-time detection.

Ullah et al. (2019) used naïve bayes for Android

malware detection that uses a combination of static

and dynamic analysis. Their approach achieved an

accuracy of 99.1% with a false positive rate of 0.2%.

However, their approach requires significant

computational resources and may not be practical

for real-time detection.

Deepika et al. (2020) provides a comprehensive

review and comparison of various Android Remote

Access Trojans (RATs). The authors conduct an

extensive analysis of existing literature, research

papers, and reports to identify the characteristics,

features, and functionality of different Android

RATs. They evaluate the RATs based on their

distribution methods, communication protocols,

surveillance capabilities, and evasion techniques.

The findings offer valuable insights into the current

landscape of Android RATs and help in

understanding their potential impact on mobile

security.

3. Methodology

The proposed system leverages Recurrent Neural

Networks (RNNs) to prevent AndroRAT infections,

offering an advanced solution for combating mobile

malware threats. By integrating a multi-layered

architecture of RNNs, renowned for their ability to

process sequential data, the system excels in

Kine Apobari Benson, IJECS Volume 13 Issue 05 May, 2024 Page 26180

capturing the dynamic behaviors exhibited by

mobile applications. Extensive Android application

datasets are collected and preprocessed to extract

relevant features, such as API call sequences and

system calls, serving as input to the RNN. The

RNN undergoes rigorous training, utilizing back

propagation through time to learn intricate patterns

indicative of AndroRAT behavior. Additionally, the

system employs a penetration tool called RAT08-

command-line to create malicious APKs, which are

then detected using outlier techniques, while

prevention measures utilize RNN to block

AndroRAT applications from accessing the system.

Figure 1: Architecture of the Proposed System

Pre-processing Layer: This layer has to do with

the cleaning and analyzing of the AndroRat

application. The cleaning of the data has to do with

checking if there exist any Nan (empty rows) or

duplicate (rows with same values) on the dataset.

Feature Extraction: The selection of features or

columns that will be used in training the reccurent

neural network model is done at this phase. Here

we created a new dataset by selecting two important

features/columns from the original dataset. These

columns are Name and Malware. The Name

Column is made up of 19612 applications and files

that are of both malware and benign while the

Malware column contains values that are 0 and 1,

where 0 signifies benign files and 1 signifies a

malware file (Unsafe). Hypervisor is a software that

sits between the real physical hardware and the

guest virtual machines.

Detection Layer: The outlier technique is used in

the detection of malicious APK that are of

AndroRat application. The outlier technique makes

use of a threshold value by default to detect

AndroRat application. Any application that has a

threshold value less than 0.5 is classified to be as

normal application, and applications with threshold

value greater than 0.5 is classified to be malicious.

The default value of the outlier is gotten from the

mean of the model.

Prevention Layer: The Recurrent Neural Network

model will be used for prevention. The LSTM

model will be trained using the dataset. The LSTM

(Long Short- Term Memory) is a Recurrent Neural

Network algorithm. The LSTM model will be built

using TensorFlow Framework with Keras

application. Keras Sequential API which means we

build the network up one layer at a time. The layers

are as follows:

 A Masking layer to mask any words

that do not have a pre-trained

embedding which will be represented

as all zeros. This layer should not be

used when training the embeddings.

 The heart of the network: a layer of

LSTM cells with dropout to prevent

overfitting. Since we are only using

one LSTM layer, it does not return the

sequences, for using two or more

layers, make sure to return sequences.

 A fully-connected Dense layer with

Relu activation. This adds additional

representational capacity to the

network.

 A Dropout layer to prevent

overfitting to the training data.

 A Dense fully connected output layer.

This produces a probability for every

word in the vocabulary using softmax

activation.

An Embedding that maps each input word to a 100-

dimensional vector. The embedding can use pre-

trained weights (more in a second) which we supply

in the weight’s parameter. Trainable can be set to

False if we don’t want to update the embeddings.

Application Layer: This layer comprise of android

phones equipped with web browsers and command

lines.

Kine Apobari Benson, IJECS Volume 13 Issue 05 May, 2024 Page 26181

Output: The output shows the output of the system

after various inputs has been entered. The output of

the system can be either malicious applications and

Benign applications.

4. Experimental SetUp

4.1 Model Training for the Detection of

AndroRAT

The experiment was carried out using shows the

implementation of a Long Short-Term Memory

(LSTM) algorithm in building a deep learning

model for detecting AndroRAT on android

applications. The LSTM model was built using an

android malware data. The dataSet was read into

the working directory using pandas library in

python, and analyzed if there are null values using a

heatmap function from seaborn library. Feature

extraction was used in reducing the columns of the

dataset by selecting just two import features, which

are the name and label columns. The name column

contains various android application while the label

column represent the class for each of the android

application. Tokenizer was used in separating each

of the text in the name column into tokens for easy

implementation while Label Encoder function was

used in converting the label column from non-

numeric values to numeric value. The reduced

dataset was split into a training data and a testing

data. 70% of the data was used for training, while

30% of the data was used for testing.

X_train,Y_train variable was used to store the

training data while X_test, Y_test are used to store

the testing data. X_val,y_val was also used in

validating the data. The training and validation data

were passed into the LSTM architecture for training

a model for detecting malicious applications on

android. The model was built using Tensorflow

Framework with Keras application. Keras

Sequential API which means we build the network

up one layer at a time. The layers are as follows:

1. An Embedding which maps each

input word to a 100-dimensional

vector. The embedding can use

pre-trained weights (more in a

second) which we supply in the

weights parameter. trainable can

be set False if we don’t want to

update the embeddings.

2. A Masking layer to mask any words

that do not have a pre-trained

embedding which will be

represented as all zeros. This layer

should not be used when training

the embeddings.

3. The heart of the network: a layer of

LSTM cells with dropout to prevent

overfitting. Since we are only using

one LSTM layer, it does not return

the sequences, for using two or

more layers, make sure to return

sequences.

4. A fully-connected Dense layer with

relu activation. This adds

additional representational

capacity to the network.

5. A Dropout layer to prevent

overfitting to the training data.

6. A Dense fully-connected output

layer. This produces a probability

for every word in the vocabulary

using softmax activation.

4.2 Results

4.2.1 Confusion Matrix

The confusion matrix shows the number of

prediction results of the classification problem. It

shows the summary of number of correct and

incorrect prediction with a count value broken

down by down. The confusion matrix is a technique

for summarizing the performance of a classification

algorithm. This is because classification accuracy

alone can be misleading if an unequal number of

observations in each class. The confusion matrix of

the LSTM model can be seen in Figure below.

Kine Apobari Benson, IJECS Volume 13 Issue 05 May, 2024 Page 26182

Figure 2: Confusion Matrix

The confusion matrix shows that the model

classified the benign class correctly 1914 times and

falsely 13, and it classifies the malicious class

correctly 1064 times and falsely 16.

4.3 Performance Analysis

The performance of the trained LSTM model was

carried out by plotting a classification report on the

trained model. The Classification report is used to

measure the quality of predictions from the LSTM

Model to check how many predictions are True and

how many are False. More specifically, True

Positives, False Positives, True negatives and False

negatives are derived while making prediction. The

classification report for the LSTM model for

android malware detection and classification can be

seen in Figure number.

Figure 4: Classification Report of the LSTM Model

The classification report shows the accuracy level

of the test data to be 99%, precision for the benign

class to be 99%, and that of the malicious app to be

99%.

4.4 Evaluation and Validation Results

Cross-validation enhances the utilization of data by

providing more comprehensive insights into the

performance of the LSTM model. In intricate

machine learning models, there's a tendency to

overlook the importance of using distinct datasets

across different stages of the pipeline. Figure 4 and

5 shows the model accuracy, model loss and

validation result.

Figure 4: Model Accuracy for both Training

and Testing Data

The accuracy of the model for both training and

testing accuracy are 99.99% and 99.91%

respectively.

Figure 5: Model Loss for both Training and Testing

Data

The accuracy of the model for both training and

testing loss are below 0.04% respectively.

Kine Apobari Benson, IJECS Volume 13 Issue 05 May, 2024 Page 26183

Figure 6: Interface of the AndroRat Detecting

System.

4.5 Penetration Testing of AndroRAT

The section demonstrates the creation of malicious

APk (AndroRAT) in accessing sensitive

information from android users remotely. A

penetration tool called RAT08-command-line was

used in the creation of AndroRAT applications on

windows. The Command line AndroRAT is a

software package that contains the controller

software and builder software to build an APK. It

was executed on a Windows 11 guest virtual

machine as a host. The Android Application

Package (APK) built by the RAT builder was

installed in the Android virtual emulator called

Genymotion using Android version 8. The

environment or interface of the AndroRAT

penetration testing using windows command line

can be seen in Figure 9. Figure 7 shows the creation

of AndroRAT application, and Figure 8 shows how

the use various commands to access the target files

that the malicious APK has been successfully

installed in the target’s android device. Figure 10

shows the output of the various commands used in

accessing the target’s file remotely.

Figure 7: Creation of the Android APK using

Command Prompt

Figure 8: Successful Installation/ Connection of the

AndroRAT APK

Figure 9: Input Commands of the AndroRAT

Figure 10: Remotely Accessed Files

5. Conclusion

This paper successfully achieved its primary goal of

developing a comprehensive model for the

detection and prevention of AndroRat on mobile

devices. Through the systematic pursuit of defined

objectives, the research culminated in the creation

of a robust detection framework employing the

Outlier Technique, enabling the identification of

AndroRat with enhanced accuracy. Additionally, a

preventive mechanism leveraging Recurrent Neural

Network (RNN) was successfully devised to fortify

Android phones against the potential threats posed

by Remote Administration Tools (RATs).

The utilization of the Python Programming

Language in implementing the developed system

not only facilitated efficient execution but also

provided a versatile and accessible platform for

future enhancements and adaptations. By fulfilling

the outlined objectives, this research contributes not

only to the field of mobile device security but also

presents a practical application of machine learning

techniques in safeguarding against evolving

Cybersecurity threats. Furthermore, the

Kine Apobari Benson, IJECS Volume 13 Issue 05 May, 2024 Page 26184

comparative analysis conducted against existing

systems underscores the effectiveness and

innovation embedded in the proposed model,

affirming its potential as a valuable addition to the

realm of AndroRat detection and prevention.

References:

1. Ahmad, S., Khalid, S., Javaid, N., & Alrajeh,

N. (2020). AndroRat: A comprehensive

review on Malware. Journal of Information

Security and Applications, 50, 102419.

2. Al-Fuqaha, A., Guizani, M., Mohammadi,

M., Aledhari, M., & Ayyash, M. (2019).

AndroRat: A comprehensive investigation

on a mobile malware targeting Android

devices. Journal of Network and Computer

Applications, 128, 82-94.

3. Ali, R., Khan, M. A., Zameer, A., Niazi, M.

A., Ali, F., & Khan, W. A. (2021). Android

Malware Detection and Classification

Techniques: A Survey. IEEE Access, 9,

42491-42508.

4. Chen, H., & Chen, T. (2019). AndroRat: A

low-cost underground android remote

administration tool for evading detection.

International Journal of Information

Security, 18(1), 83-98.

5. Deepika, K., Singh, A., & Yadav, A. K.

(2020). AndroRat: An Android Remote

Administration Tool. International Journal

of Advanced Computer Science and

Applications, 11(8), 474-478.

6. Nabi, A., Nishad, S. H., Ahmed, S., Shahid,

S., & Kim, H. K. (2019). A comprehensive

study of android malware: Trends and

detection techniques. Computers and

Security, 83, 1-27.

7. Shi, J., Xu, X., & Yang, J. (2019). Android

malware detection using weighted directed

graphs. Security and Communication

Networks, 1-10.

8. Ullah, R., Ahmed, I., Shah, M. A., Khan, M.

A., & Kim, T. H. (2019). AndroRat: A

comprehensive investigation on a mobile

malware tool. Computers and Security, 83,

18-31.

9. Wang, Z., Liu, X., & Li, X. (2020). A

survey on android malware: Detection,

analysis, and countermeasures. Journal of

Network and Computer Applications, 155,

102655.

10. Zhang, Y., Wang, Y., & Zhang, X. (2018).

Research on AndroRat intrusion technology

and defense strategy. International Journal

of Security and Its Applications, 12(2), 205-

214.

11. Zhou, M., Ge, H., Wang, Z., Liu, Y., & Liu,

X. (2020). Droidetec: Android malware

detection and malicious code localization

through deep learning. arXiv preprint

arXiv:2002.03594.

